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A critical part of Lagrangian-based 
methods for Computational Fluid 
Dynamics (CFD) is the ability to 
remap or interpolate data from 

one computational mesh to another. This is 
the case for the popular ALE schemes that 
perform Lagrangian steps followed by remaps 
to fixed grids. Remapping is also essential for 
pure Lagrangian methods, since they can lead 
to tangled grids that must then be untangled 
with a concomitant remap step. Even if 
the basic scheme produces only physically 
meaningful quantities, a remapping method 
can create out-of-bounds quantities such as 
negative densities or pressures. In some CFD 
codes, the offending values are simply set to 
a small positive number when this occurs, at 
which point mass or total energy is no longer 
conserved. Although in most instances the 
error thereby created is negligible, we have 
shown that in at least one example the error is 
significant.

By taking great care with the remapping in 
the CFD context, it is possible to maintain 
positive mass density. This is done by first 
extending the given mean densities in each 
original cell to the whole domain so that the 
new distribution is everywhere positive, and 
then computing new mean values by exact 
integration over the cells of the new grid. 
Total energy can be remapped in this way, 
but then there is no guarantee that internal 
energy will be positive. Furthermore, in more 
than one dimension, exact integration is 
computationally intensive.

Another context in which nonphysical data 
can occur is in divergence-free advection 
of a concentration that must retain values 
between zero and one. High quality advection 

schemes, some of which are based on 
remapping ideas [1, 2], unavoidably have this 
fault [3].

The goal in this work is to improve upon and 
apply the repair idea introduced in [4, 5]. 
A repair method can be viewed as a way 
to correct values on a discrete mesh by 
redistributing the conserved quantity so that 
conservation and a maximum principle are 
preserved. The maximum principle is that 
new values should obey certain upper and 
lower bounds obtained from old values. In 
this way not only are nonphysical quantities 
eliminated, but oscillations are reduced 
(albeit not necessarily eliminated). We 
therefore seek repair algorithms that can 
be applied to CFD problems, advection 
problems, or other situations where values of 
a discrete variable must be placed in bounds 
without violating a conservation law and 
without introducing significant errors into 
the dynamics.

Repair methods can be used for many kinds 
of variables, including density, velocity, 
energy, pressure, and concentration, but 
we will henceforth call our variable to be 
repaired a density ρ, or equivalently, a mass 
m. If we denote old cells by c and new cell by 
˜ c , then the quantity to be conserved is the 

total mass m = ∑cm(c) = ∑cρ(c)V(c), where 
m(c), ρ(c), and V(c) denote the mass, density, 
and volume, respectively, of cell c.

Consider an old mesh M with cell-averaged 
densities (called old densities), and a new 
mesh ˜ M  with remapped cell-averaged 
densities (called new densities). The 
connectivity is the same for the old and new 
grids. 

Typically the new mesh is a small 
perturbation of the old grid. If we define 
the bound neighborhood N(c) of a cell c as 
a patch of surrounding cells, we can define 
maximum and minimum density bounds as 
ρ + (c) = maxs∈N(c) ρ(s) and ρ–(c) = mins∈N(c)ρ(s). 
(There are, of course, other reasonable ways 
to define density bounds.) No matter how 
the bounds are defined, there is a feasibility 
condition for repair to work at all.

FEASIBILITY: The total mass m must not 
exceed (resp. be below) the total upper bound 
mass (resp. the total lower bound mass), that 
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is, the total mass if each new cell were at its 
upper (resp. lower) bound.

If a remapping process produces negative 
densities ρ( ˜ c ), or more generally produces 
out-of-bounds densities, then a repair step 
must be done to make these densities obey 
their bounds. The properties to be fulfilled by 
a repair method are:
Conservation:  

∑cm(c) = ∑cρ(c)V(c) = ∑ ˜ c  ρ( ˜ c )V( ˜ c )  

 = ∑ ˜ c m( ˜ c ).

Maximum principle: 

∀c ,ρ− (c) ≤ ρ ˜ c ( ) ≤ ρ + c( ) .

In this work we first reviewed a local repair 
method [5] which repairs out-of-bounds 
values and distributes the mass discrepancies 
locally. This method can produce different 
results depending on the order in which cells 
are visited, and it is therefore called order-
dependent. Next we reviewed a simple global 
repair process [4] which repairs out-of-
bounds values and distributes the resulting 
mass discrepancy across the entire grid. Then, 
we introduced two order-independent local 
methods, only one of which is well suited 
for parallelization. The idea of this method 
is to repair as many cells as possible with a 
local treatment: first the upper bounds, then 
the lower bounds, with an iterative process. 

Then,  if some cells are still out-of-bounds, a 
global treatment is provided to fix them.

Numerical tests were performed to show the 
effects of such methods on advection and 
hydrodynamics problems like the double 
nonsymmetric blastwave solved with the 
ALE INC. code (see the article “An Arbitrary-
Lagrangian-Eulerian Code for Polygonal 
Mesh: ALE INC(ubator)” in this volume on 
page 118) where the repair method [6] is 
necessary for the code to produce a physically 
meaningful solution (see Fig. 1).
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Figure 1—
Interaction of two 
blastwaves in a box. 
Initially, two half disks 
centered at x = (±0.5, 0) 
have a high energy com-
pared to the interior of 
the box—t = 0.3 and 
t = 0.8.
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